Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IBRO Rep ; 7: 108-116, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31799470

RESUMO

Bilateral eye enucleation at birth (BE) leads to an expansion of the primary somatosensory cortex (S1) in rat pups. Although increased growth of the somatosensory thalamo-cortical afferents (STCAs) in part explains S1 expansion, timing mechanisms governing S1 formation are also involved. In this work, we begin the search of a developmental clock by intending to document the existence of putative clock neurons in the somatosensory thalamus (VPM) and S1 based upon changes of spontaneous spike amplitude; a biophysical property sensitive to circadian regulation; the latter known to be shifted by enucleation. In addition, we also evaluated whether STCAs growth rate and segregation timing were modified, as parameters the clock might time. We found that spontaneous spike amplitude transiently, but significantly, increased or decreased in VPM and S1 neurons of BE rat pups, respectively, as compared to their control counterparts. The growth rate and segregation timing of STCAs was, however, unaffected by BE. These results support the existence of a developmental clock that ticks differently in the VPM and S1 after BE. This observation, together with the fact that STCAs growth rate and segregation timing is unchanged, suggests that S1 expansion in BE rats may in part be controlled at the cortical level.

2.
PLoS One ; 8(1): e54940, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23372796

RESUMO

Birth-enucleated rodents display enlarged representations of whiskers (i.e., barrels of the posteromedial subfield) in the primary somatosensory cortex. Although the historical view maintains that barrel expansion is due to incremental increases in neuronal activity along the trigeminal pathway during postnatal development, recent evidence obtained in experimental models of intramodal plasticity challenges this view. Here, we re-evaluate the role of experience-dependent neuronal activity on barrel expansion in birth-enucleated rats by combining various anatomical methods and sensory deprivation paradigms. We show that barrels in birth-enucleated rats were already enlarged by the end of the first week of life and had levels of metabolic activity comparable to those in control rats at different ages. Dewhiskering after the postnatal period of barrel formation did not prevent barrel expansion in adult, birth-enucleated rats. Further, dark rearing and enucleation after barrel formation did not lead to expanded barrels in adult brains. Because incremental increases of somatosensory experience did not promote barrel expansion in birth-enucleated rats, we explored whether shifts of the developmental timing could better explain barrel expansion during the first week of life. Accordingly, birth-enucleated rats show earlier formation of barrels, accelerated growth of somatosensory thalamocortical afferents, and an earlier H4 deacetylation. Interestingly, when H4 deacetylation was prevented with a histone deacetylases inhibitor (valproic acid), barrel specification timing returned to normal and barrel expansion did not occur. Thus, we provide evidence supporting that shifts in developmental timing modulated through epigenetic mechanisms, and not increased levels of experience dependent neuronal activity, promote barrel expansion in the primary somatosensory cortex of rats enucleated at birth.


Assuntos
Neurônios/fisiologia , Córtex Somatossensorial/crescimento & desenvolvimento , Córtex Somatossensorial/fisiologia , Acetilação/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Montagem e Desmontagem da Cromatina , Histonas/metabolismo , Masculino , Ratos , Privação Sensorial , Gânglio Trigeminal/fisiologia , Ácido Valproico/farmacologia
3.
Brain Res ; 1383: 90-8, 2011 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-21303665

RESUMO

Neurogenesis is a process influenced by environmental cues that create highly specific functional niches. Recently, the role of blood vessels in the maintenance and functioning of neurogenic niches during development and in adult life has been hallmarked. In addition to their trophic support for the highly demanding neurogenic process, blood vessels regulate neuroblast differentiation and migration and define functional domains. Since neurogenesis along the forebrain neurogenic niche (FNN) is a multistage process, in which neuroblast proliferation, differentiation and migration are spatially restricted to specific locations; we evaluated the structural features of vascular beds that support these processes during critical time points in their development. Additionally, we studied the molecular identity of the endothelial components of vascular beds using the expression of the venous marker EphB4. Our results show that blood vessels along the FNN: 1) are present very early in development; 2) define the borders of the FNN since early developmental stages; 3) experience constant remodeling until achieving their mature structure; 4) show venous features during perinatal developmental times; and 5) down-regulate their EphB4 expression as development proceeds. Collectively, our results describe the formation of the intricate vascular network that may support neurogenesis along the FNN and show that blood vessels along this neurogenic niche are dynamic entities that experience significant structural and molecular remodeling throughout development.


Assuntos
Circulação Cerebrovascular/fisiologia , Neurogênese/fisiologia , Prosencéfalo/irrigação sanguínea , Prosencéfalo/embriologia , Receptor EphB4/biossíntese , Nicho de Células-Tronco/irrigação sanguínea , Animais , Imunofluorescência , Processamento de Imagem Assistida por Computador , Camundongos , Neovascularização Fisiológica/fisiologia , Células-Tronco Neurais/metabolismo , Prosencéfalo/citologia , Nicho de Células-Tronco/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...